Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 9440, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658799

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Melanins , Pteridines , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , alpha-MSH , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Melanins/biosynthesis , Melanins/metabolism , Animals , alpha-MSH/metabolism , alpha-MSH/pharmacology , Mice , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Ultraviolet Rays , Morpholines/pharmacology , Chromones/pharmacology , Nitriles/pharmacology , Butadienes/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Melanoma, Experimental/metabolism , Melanogenesis
2.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480902

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Cyclic AMP Response Element-Binding Protein , Nuclear Envelope , Proteomics , Apoptosis , DNA , Nuclear Envelope/metabolism , Humans , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism
3.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article En | MEDLINE | ID: mdl-37895175

The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.


Membrane Proteins , Nuclear Envelope , Nuclear Envelope/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/genetics , Cytoplasm/metabolism , Transcription Factors/metabolism , Cell Nucleus/metabolism
4.
Arch Pharm Res ; 46(1): 44-58, 2023 Jan.
Article En | MEDLINE | ID: mdl-36607545

E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.


Mitogen-Activated Protein Kinase Kinases , Neoplasms , E2F Transcription Factors/metabolism , Cell Cycle , Cell Proliferation , Cell Cycle Proteins
5.
Phytomedicine ; 108: 154486, 2023 Jan.
Article En | MEDLINE | ID: mdl-36240609

BACKGROUND: Microglia are innate immune cells in the central nervous system that play a crucial role in neuroprotection by releasing neurotrophic factors, removing pathogens through phagocytosis, and regulating brain homeostasis. The constituents extracted from the roots and stems of the Daphne genkwa plant have shown neuroprotective effects in an animal model of Parkinson's disease. However, the effect of Daphne genkwa plant extract on microglia has yet to be demonstrated. PURPOSE: To study the anti-inflammatory and neuroprotective effects of Daphne genkwa flower extract (GFE) in microglia and explore the underlying mechanisms. METHODS: In-vitro mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), inducible nitric oxide synthase, Arginase1, and brain derived neurotropic factor (BDNF) were analyzed by reverse transcription polymerase chain reaction in microglia cells. Nitric oxide (NO) and TNF-α protein were respectively analyzed by Griess reagent and Enzyme Linked Immunosorbent Assay. Immunoreactivity of Iba-1, Neu-N, and BDNF in mouse brain were analyzed by immunofluorescence staining. Phagocytosis capacity of microglia was examined using fluorescent zymosan-red particles. RESULTS: GFE significantly inhibited lipopolysaccharide (LPS)-induced neuroinflammation and promoted neuroprotection both in vitro and in vivo. First, GFE inhibited the LPS-induced inflammatory factors NO, iNOS, and TNF-α in microglial cell lines and primary glial cells, thus demonstrating anti-inflammatory effects. Arginase1 and BDNF mRNA levels were increased in primary glial cells treated with GFE. Phagocytosis was also increased in microglia treated with GFE, suggesting a neuroprotective effect of GFE. In vivo, neuroprotective and anti-neuroinflammatory effects of GFE were also found in the mouse brain, as oral administration of GFE significantly inhibited LPS-induced neuronal loss and inflammatory activation of microglia. CONCLUSION: GFE has anti-inflammatory effects and promotes microglial neuroprotective effects. GFE inhibited the pro-inflammatory mediators and enhanced neuroprotective microglia activity by increasing BDNF expression and phagocytosis. These novel findings of the GFE effect on microglia show an innovative approach that can potentially promote neuroprotection for the prevention of neurodegenerative diseases.


Daphne , Neuroprotective Agents , Plant Extracts , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Daphne/chemistry , Flowers/chemistry , Microglia/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/pharmacology , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
J Cancer Prev ; 28(4): 143-196, 2023 Dec 30.
Article En | MEDLINE | ID: mdl-38205362

Cyclic GMP-AMP (cGAMP), synthesized by cGAMP synthase (cGAS), serves as a secondary messenger that modulates various cellular processes, including cell proliferation, cell death, immune response, and inflammation. cGAS is activated upon detecting cytoplasmic DNA, which may originate from damaged genomic and mitochondrial DNA or from viral and bacterial infections. The presence of DNA in the cytoplasm can trigger a substantial inflammatory reaction and cytokine production via the cGAS-STING signaling pathway. Consequently, specific inhibitors targeting this pathway hold significant potential as chemopreventive agents. In this review, we explore the potential effectiveness of modulating cGAS activity. We discuss the role of cGAMP, the mechanism of action for distinguishing between self and foreign DNA, and the possible functions of cGAS within the nucleus.

...